a2 United States Patent

Lindemann

US009450760B2

10) Patent No.: US 9,450,760 B2
45) Date of Patent: Sep. 20, 2016

(54) SYSTEM AND METHOD FOR
AUTHENTICATING A CLIENT TO A DEVICE

(71) Applicant: NOK NOK LABS, INC., Palo Alto,
CA (US)

(72) Inventor: Rolf Lindemann, Kiefernbruch (DE)

(73) Assignee: NOK NOK LABS, INC., Palo Alto,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/448,641

(22) Filed: Jul. 31, 2014

(65) Prior Publication Data
US 2016/0241403 A1 Aug. 18, 2016

(51) Int. CL

HO4L 9/32 (2006.01)
HO4L 29/06 (2006.01)
(52) US. CL
CPCcccue. HO4L 9/3247 (2013.01); HO4L 63/06
(2013.01)
(58) Field of Classification Search
CPC .o, HO4L 9/3247; HO4L 63/016
USPC ittt 713/176

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,512,567 B2 3/2009 Bemmel et al.
2003/0152252 Al 8/2003 Kondo
2006/0282670 Al* 12/2006 Karchov HO4L 63/0823
713/175
2009/0193508 Al 7/2009 Brenneman
2009/0307139 Al 12/2009 Mardikar et al.
2011/0307949 A1* 12/2011 Rondac........ HO4L 9/3213
726/9

Client Terminal
400 450

OTHER PUBLICATIONS

Barker et al; “Recommendation for key management Part 3: Appli-
cation—Specific Key Management Guidance” ; NIST special Pub-
lication 800-57, pp. 1-103, Dec. 2009.*

Office Action from U.S. Appl. No. 14/218,551, mailed May 12,
2016, 11 pages.

Notice of Allowance from U.S. Appl. No. 14/487,992, mailed May
12, 2016, 11 pages.

Final Office Action from U.S. Appl. No. 14/448,814, mailed Jun. 14,
2016, 17 pages.

(Continued)

Primary Examiner — Hadi Armouche

Assistant Examiner — Angela Holmes

(74) Attorney, Agent, or Firm — Nicholson De Vos Webster
& Elliott LLP

(57) ABSTRACT

A system, apparatus, method, and machine readable medium
are described for authenticating a client to a device. For
example, one embodiment of a method comprises: register-
ing an authenticator of a client with a relying party, the
registration allowing a user of the client to remotely authen-
ticate the user to the relying party over a network; generating
a first authentication structure using at least a first authen-
tication key associated with the authenticator and a signature
generated with a first verification key; caching the first
authentication structure on the client; providing a second
verification key corresponding to the first verification key to
a transaction device; performing an authentication transac-
tion between the client and the transaction device in which
the client generates a second authentication structure using
a second authentication key associated with the first authen-
tication key, the transaction device uses the second verifi-
cation key to validate the signature on the first authentication
structure and uses the first authentication key to validate the
second authentication structure.

26 Claims, 14 Drawing Sheets

Relying Party
451

Request Cacheable Authentication Request’

Generate Cacheable Auth Request:
ServerData = Uauth.pub + Sign
{RPVerifyKey, Uauth.pub | Nonce)
502

Cache
Authentication
Request
504

Initiate Transaction

€ T Identity, nonce, optionally

transaction text in defined syntax
506

Generate Authentication
Response related to Cached
Request for Specific T
507

Send Authentication Response
508

N

Success/Fail

Cacheable Authentication Request

Verify signed Uauth.pub from
ServerData in Authentication Resonse;
Use Uauth.pub to verify Authentication

Response
509

Send Auth Response +

Transaction Text (optional)

US 9,450,760 B2
Page 2

(56) References Cited Notice of Allowance from U.S. Appl. No. 14/448,641, mailed Jun.

7, 2016, 13 pages.
Office Action from U.S. Appl. No. 14/218,611, mailed Jun. 16,
OTHER PUBLICATIONS

2016, 13 pages.
Office Action from U.S. Appl. No. 14/066,273, mailed Jun. 16,

2016, 43 pages. * cited by examiner

US 9,450,760 B2

Sheet 1 of 14

Sep. 20, 2016

U.S. Patent

[AOJE |

SOT
uonesl|ddy

G :
1

| €01 “

r vot uoIeIIX] L

9403 ! BUREN aJnmeaq “
1

I 1

1

“ Wyog|y !

011
eleQ 9JUJ349Y
olIBWoOIg

0¢CT 1U3lD

[41) #
Josuasg

00T =2Ins(dli3swiolg

1nduj

JlWOIg

US 9,450,760 B2

Sheet 2 of 14

Sep. 20, 2016

U.S. Patent

ore
aseqeleq

uoloesuel]

2Indag

€ee
(JSEVVETS
uonoesueJ |
24N23S SasIWRId-}0

(44
(JSEVVETS
uonoesueJ |
24N23S S3sIWJd-UQ

/]

4

T€C
USqIM

(0154
uoneunsaq qaM Jo
aslidJajug andag

V¢ 'Ol

[4 %4 TT¢ 01¢
ERILET ERILET ERILET
T winy yiny yiny
70T 22eL1y|
uoI1123Uu0) / roc
9JIAJaS uonjoesuedj
24n23g X
31n29g
uoI102uUl0) _/ S0z uIdn|d
o;:uom\&:uomcﬁ_d\v uonoesuel] aindas
0¢
J9smoJg
00¢ WuslD

(1144
a8el01g

2Indag

US 9,450,760 B2

Sheet 3 of 14

Sep. 20, 2016

U.S. Patent

ore
aseqeleq

uoloesuel]

2Indag

€ee
(JSEVVETS
uonoesueJ |
24N23S SasIWRId-}0

(44
(JSEVVETS
uonoesueJ |
24N23S S3sIWJd-UQ

/]

4
TS¢
32IAIDS

40MIoN

(0154
uoneunsaq qaM Jo
aslidJajug andag

4¢ "Old

(414
321naQ

yany

TT¢ 01¢
ERILETY 321naQ

yiny yiny

uoI1d3Uu0)
24n2ag

uoinoau
aJndasun/

uod
24n22§

702 2oeLI21U|

9JIAJaS uonjoesuedj

T0C

2Indag

uolned|ddy

1474

00¢ 1u3lD

(1144
a8el01g

2Indag

US 9,450,760 B2

Sheet 4 of 14

Sep. 20, 2016

U.S. Patent

(@21M435 1S
01 }1 pPUSs pue
Aoy ajeJauad

Ajjeuondo)

‘d1A3p
uoneduayne
15311k “1asn
ay1 Ajuapi

uona|dwod Inoge ausqam AJIION

~

paysiuly

3uluolsiaoad 92183

201A8p 01Ul Ad)| Jo1sISay

”
22IA3Q YNy
ul uoleJsuasd
Ay 4933141 10

DIAIP 03Ul ASY
UOoISINOUd Jayu]

a8uaj|eyD wopuey

21E21UNWWIOD puas pue
UQI3122UuU0d 9Jnd3as aykeal)

(swny jo poriad <piemiop> <pJemioy>
[|lews e Joj} paysiuty
pilen) aguajjeyd UOoIIBDIIBA
wopueld 195N
9lelauan 10 JuswijjoJuy
1asn
o€z 0z d3sn S0z 102 (1] ¥4
NOILYNILSIa 43SMONd NI9NTd 1S IDINY3S 1S PINIA
93M/3SI4dHILINT HLNY

¢ 'Old

US 9,450,760 B2

Sheet 5 of 14

VE ‘D14
012 \ —
o 1O

T0C
9JIAJ9S Uojoesuel] 94ndasS

sadims
Jasn ayi |aun aJnieusis pue
X391 9y3 AJlaA 28us|jeyd wopued e
X 1UN0J2E WIISAS [E207]
Aj|e21pouad s|le1ap uolldesued|

Sep. 20, 2016

\ ‘uolnoesue.ly /

SIY1 WJIjuod 0}
133uly JNOA adims ases|d
S0¢
Hom\["AAA "IN 01 Asuow urdnid 1s
XX$ puss 01 IN0ge aJe NOA
"

T
2 0z
= J35MO.Ug 18uJa1u]

U.S. Patent

1uno2Je Jasn

US 9,450,760 B2

Sheet 6 of 14

Sep. 20, 2016

U.S. Patent

114
aseqejeq

uonoesued|
aindag

€TE
viE 3uissacoud
HoReshtstany 2Jn1eusis

a€ ‘o4

aJnieudis
eleq uonediuayIny
s|lerag uonoesues|

a8uajjeyd wopuey

(423
J3AISS UOI1DESUR] 94NJ3S

uo1edIIUBYINY
40} uoijoesued]
440 puey

T1E

{28u?jjey> wopues
+ S|le19p uoNdesues)
‘Aoy} 24n1eusis

s|ieyaq uoloesuel|

28ua|jeyo wopuey

3DIAIDS JO SUSYIM

0€T
uoneunsaq gam Jo
3s11dJa3u] 24n23g

uoloesued|
s@1e111u| JanIas

00¢ 3!D

US 9,450,760 B2

Sheet 7 of 14

Sep. 20, 2016

U.S. Patent

¥ "Old

ostv

fmmmmmmm e mmmmmmm o m 22 > (712 ‘@21n2Qg sod ‘LY “89)
“ 90IA9(/ |eUIWIS | UOHDeSURL |
m [auuey)
| 24n22
v S
TSP
ERITVELS oot
uonoesuel] 22 > $321A9(Q UoEdUBYINY
24N23S YUM YU JUBID

Aued SulA|ay

e1eq
UOIEIILIDA

J9sn

US 9,450,760 B2

Sheet 8 of 14

Sep. 20, 2016

U.S. Patent

VS "Old

<08
(2ouoN | gnd-yinen ‘AS)AJUSACY)
udis + gnd-yinen = e3egIanias

:1sanbay Yiny ajqesayoe) ajesausn

TIS
(leuondo) 1xa] uonoesue.s|
+ 3suodsay yiny puas

608
asuodsay

uoliealuayiny AjsA 03 gnd-yanen asn
‘9suosay uoIIEDJUBYINY Ul B1BJQISAISS
wiod) gnd-yinen pausdis Ajluap

€0S
3sanbay uoljediuaYINY ajgeayde)

(1) 81
|le4/sse220n§

80§
asuodsay uonesiuayIny puas

0S8
1 014102ds 10} 31sanbay
payoe) 03 paje|ad asuodsay
UDIIEINUSYINY J]1EJI3UID)

90§
XBIUAS paulap Ul 1X33 UOI1DESURS])
Ajjeuondo ‘sauou ‘Alnuapl |

509
uolnoesuel] aleniu|

r0s
1sanbay
uonieanuayiny
ayoed

10S
1sanbay uonesnuayiny ajgeayde) isenbay

18 4 oSy
Aued SuiA|ay

|eurnuia |

oor
3ld

US 9,450,760 B2

Sheet 9 of 14

Sep. 20, 2016

U.S. Patent

4a¢ "Oid

€S

(22uoN | gnd-yinen ‘ASNAJISACY)

udis + qnd-yinen = e1egJanIas

:3sanbay yiny ajgeayoe) ajeiausn

0€s
(jeuondo) 1xa uoiyoesues|
+ 9suodsay Yany puas

14
asuodsay

uoljeaniuayiny Ajluaa o3 qnd-yinen asn
‘asuodsay UoIIEDIUBLYINY Ul BIB(IDAIDS
woJd} gnd-yinen pausis AjISA

6CS
[le4/s5920NS

12§
asuodsay UoneIIUaYINY puas

9¢s
1 21}109ds 40y 1sanbay
payoeD 01 paje|al asuodsay
UOIIBJ1IUBYINY J1RISUID)

T4

XBIUAS pauljap Ul 3Xe3 uolldesuedy

Ajjeuondo pue Aynnuap| 1

15174
Aped SuiA|oy

N
ves
159nbay yIny puss
| ¥4
159nb3ay UOIILIIUBYINY 40} JSY
445 ‘Uonoesuel] aleniu|
00 ualD jo
JeYaq uo 153nbay
uoIIeIIUAYINY
10434 0sY oov
leuiLIa] waip

US 9,450,760 B2

Sheet 10 of 14

Sep. 20, 2016

U.S. Patent

9 "OId

TSt
Ayied SuiA|ay

<19
SEYVNELS

WETNERILE

TT9
ddy

WETNERILE

209
walp
uonednUAYINY

[a[RERLE
/ aiddy

N

T09

0SP |eulwdal

ddy ajiqolAl

00t 1UalD

US 9,450,760 B2

Sheet 11 of 14

Sep. 20, 2016

U.S. Patent

8 "OId

uxjo] pausdisun

08

€08 2Jn3eusis ¥ 108 (qnd-yinen sapn|pul) eyep pausis-aq-o1
f
24Nn32NJ315 pausis
7oL qnd'yinen
€0L 4

ainieusis uayol

TOL eiep pausis-aq-03 uadol

|

u ol pausis

US 9,450,760 B2

6 "Old

Sheet 12 of 14

Sep. 20, 2016

U.S. Patent

0g6
(d¥) Aied SuiAjay

3WI3 JUBAI|RJ DY} 1B dY 03 A}JAIID3UUOD dUIjUO
3|qe||a4 aAeY 3,Usa0p Ad|ABP SuRNdWOD s,4asN

JAWOISND paqasgns "8'a
‘dY 2Y1 03 UoIB|J PaYs||eIsa sey Jasn

(443
uoJ122uUu0)
0L6
0000 o \d aolnag
/.%v@ 0/.70 \\\700
@7 0 R4 90/.
OJ- OOO Pl @/Y
D 7,700
J.@V /YJ: \\@‘{0
td
HNm /%M- leﬁs \\ //9
uoI3UU0) 0¢o & @x
@%&/&% \\\ANVO
J-IV o .7 /Jw\
O s (o)1
* /V// pid N
) \\ o.{
\\\ 0/”{
R

016
ao1naQ
Sunndwo) s Jasn

0¢6
uoII3UU0)

US 9,450,760 B2

Sheet 13 of 14

Sep. 20, 2016

U.S. Patent

— — 0/0T 0901
0601 0801
3DIA3A AV1dSIa (T¥YNOILdO)
(S)3DV4¥ILNI SSTTIHIM S3DIA3A O/ 2 Y3TTO4LNOD ATIdSI 500
A A A A
y y %
0S0T (S3)snd
y A y
y y %
_ 0201
>xm¢_\m_w§ 00T F40) (4OSSID0UdOHIIN
1LY TOANON AYOWIIN A1ddNS ¥3IMOd “5'3) INILSAS
ONISSII0Yd
0T0T

(TYNOILdO) IHOVD

US 9,450,760 B2

Sheet 14 of 14

Sep. 20, 2016

U.S. Patent

IT "old

0STT
(T¥YNOILdO)
0/I ¥3HLO

BYARS
(S)321A3A LNdNI

STANS
AlddNS
4IMOd

0911
30IA3Q AV1dSId
8 43T1I04LNOD

AV1dSId

0zZgs
(4OSSIDOYUdOHIIN

“53)
INFLSAS ONISSID0Hd

ovTT
o/1olanv

0STT
("DL3 ‘ANOHd3I 1AL
YYINTI3D ‘SSTTIHIM ‘Yl
‘I41M ‘HLOOL3NTE 'D'F)
SIOVAYILNI SSITIHIM

OTTT
AdONIN

US 9,450,760 B2

1

SYSTEM AND METHOD FOR
AUTHENTICATING A CLIENT TO A DEVICE

BACKGROUND

1. Field of the Invention

This invention relates generally to the field of data pro-
cessing systems. More particularly, the invention relates to
a system and method for authenticating a client to a device
such as an offline device or a device having limited con-
nectivity to a relying party.

2. Description of Related Art

FIG. 1 illustrates an exemplary client 120 with a biometric
device 100. When operated normally, a biometric sensor 102
reads raw biometric data from the user (e.g., capture the
user’s fingerprint, record the user’s voice, snap a photo of
the user, etc) and a feature extraction module 103 extracts
specified characteristics of the raw biometric data (e.g.,
focusing on certain regions of the fingerprint, certain facial
features, etc). A matcher module 104 compares the extracted
features 133 with biometric reference data 110 stored in a
secure storage on the client 120 and generates a score 153
based on the similarity between the extracted features and
the biometric reference data 110. The biometric reference
data 110 is typically the result of an enrollment process in
which the user enrolls a fingerprint, voice sample, image or
other biometric data with the device 100. An application 105
may then use the score 135 to determine whether the
authentication was successful (e.g., if the score is above a
certain specified threshold).

Systems have also been designed for providing secure
user authentication over a network using biometric sensors.
In such systems, the score 135 generated by the application
105, and/or other authentication data, may be sent over a
network to authenticate the user with a remote server. For
example, Patent Application No. 2011/0082801 (“’801
application”) describes a framework for user registration and
authentication on a network which provides strong authen-
tication (e.g., protection against identity theft and phishing),
secure transactions (e.g., protection against “malware in the
browser” and “man in the middle” attacks for transactions),
and enrollment/management of client authentication tokens
(e.g., fingerprint readers, facial recognition devices, smart-
cards, trusted platform modules, etc).

The assignee of the present application has developed a
variety of improvements to the authentication framework
described in the 801 application. Some of these improve-
ments are described in the following set of U.S. patent
applications (“Co-pending applications™), all filed Dec. 29,
1012, which are assigned to the present assignee: Ser. No.
13/730,761, Query System and Method to Determine
Authentication Capabilities; Ser. No. 13/730,776, System
and Method for Efficiently Enrolling, Registering, and
Authenticating With Multiple Authentication Devices; Ser.
No. 13/730,780, System and Method for Processing Ran-
dom Challenges Within an Authentication Framework; Ser.
No. 13/730,791, System and Method for Implementing
Privacy Classes Within an Authentication Framework; Ser.
No. 13/730,795, System and Method for Implementing
Transaction Signaling Within an Authentication Framework.

Briefly, the Co-Pending Applications describe authenti-
cation techniques in which a user enrolls with biometric
devices of a client to generate biometric template data (e.g.,
by swiping a finger, snapping a picture, recording a voice,
etc); registers the biometric devices with one or more servers
over a network (e.g., Websites or other relying parties
equipped with secure transaction services as described in the

30

35

40

45

50

55

2

Co-Pending Applications); and subsequently authenticates
with those servers using data exchanged during the regis-
tration process (e.g., encryption keys provisioned into the
biometric devices). Once authenticated, the user is permitted
to perform one or more online transactions with a Website or
other relying party. In the framework described in the
Co-Pending Applications, sensitive information such as fin-
gerprint data and other data which can be used to uniquely
identify the user, may be retained locally on the user’s client
device (e.g., smartphone, notebook computer, etc) to protect
a user’s privacy.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained from the following detailed description in conjunc-
tion with the following drawings, in which:

FIG. 1 illustrates an exemplary client device having
biometric authentication capabilities;

FIGS. 2A-B illustrate two different embodiments of a
secure authentication system architecture;

FIG. 2C illustrates a transaction diagram showing how
keys may be registered into authentication devices;

FIGS. 3A-B illustrates embodiments for secure transac-
tion confirmation using a secure display;

FIG. 4 illustrate one embodiment of the invention for
performing authentication for a transaction with a device
without established relation;

FIGS. 5A-B are transaction diagrams showing two dif-
ferent embodiments for performing authentication for a
transaction;

FIG. 6 illustrates additional architectural
employed in one embodiment of the invention;

FIGS. 7-8 illustrate different embodiments of bearer
tokens employed in different embodiments of the invention;

FIG. 9 illustrates exemplary “offline” and “semi-offline”
authentication scenarios;

FIG. 10 illustrates an exemplary system architecture for
clients and/or servers; and

FIG. 11 illustrates another exemplary system architecture
for clients and/or servers.

features

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Described below are embodiments of an apparatus,
method, and machine-readable medium for implementing
advanced authentication techniques and associated applica-
tions. Throughout the description, for the purposes of expla-
nation, numerous specific details are set forth in order to
provide a thorough understanding of the present invention.
It will be apparent, however, to one skilled in the art that the
present invention may be practiced without some of these
specific details. In other instances, well-known structures
and devices are not shown or are shown in a block diagram
form to avoid obscuring the underlying principles of the
present invention.

The embodiments of the invention discussed below
involve client devices with authentication capabilities such
as biometric devices or PIN entry. These devices are some-
times referred to herein as “tokens,” “authentication
devices,” or “authenticators.” While certain embodiments
focus on facial recognition hardware/software (e.g., a cam-
era and associated software for recognizing a user’s face and
tracking a user’s eye movement), some embodiments may
utilize additional biometric devices including, for example,
fingerprint sensors, voice recognition hardware/software

US 9,450,760 B2

3

(e.g., a microphone and associated software for recognizing
a user’s voice), and optical recognition capabilities (e.g., an
optical scanner and associated software for scanning the
retina of a user). The authentication capabilities may also
include non-biometric devices such as trusted platform
modules (TPMs) and smartcards.

In a mobile biometric implementation, the biometric
device may be remote from the relying party. As used herein,
the term “remote” means that the biometric sensor is not part
of the security boundary of the computer it is communica-
tively coupled to (e.g., it is not embedded into the same
physical enclosure as the relying party computer). By way of
example, the biometric device may be coupled to the relying
party via a network (e.g., the Internet, a wireless network
link, etc) or via a peripheral input such as a USB port. Under
these conditions, there may be no way for the relying party
to know if the device is one which is authorized by the
relying party (e.g., one which provides an acceptable level
of authentication and integrity protection) and/or whether a
hacker has compromised the biometric device. Confidence
in the biometric device depends on the particular implemen-
tation of the device.

However, as discussed below, the authentication tech-
niques employed to authenticate the user may involve non-
location components such as communication over a network
with remote servers and/or other data processing devices.
Moreover, while specific embodiments are described herein
(such as an ATM and retail location) it should be noted that
the underlying principles of the invention may be imple-
mented within the context of any system in which a trans-
action is initiated locally or remotely by an end user.

The term “relying party” is sometimes used herein to
refer, not merely to the entity with which a user transaction
is attempted (e.g., a Website or online service performing
user transactions), but also to the secure transaction servers
implemented on behalf of that entity which may performed
the underlying authentication techniques described herein.
The secure transaction servers which provided remote
authentication capabilities may be owned and/or under the
control of the relying party or may be under the control of
a third party offering secure transaction services to the
relying party as part of a business arrangement.

The term “server” is used herein to refer to software
executed on a hardware platform (or across multiple hard-
ware platforms) that receives requests over a network from
a client, responsively performs one or more operations, and
transmits a response to the client, typically including the
results of the operations. The server responds to client
requests to provide, or help to provide, a network “service”
to the clients. Significantly, a server is not limited to a single
computer (e.g., a single hardware device for executing the
server software) and may, in fact, be spread across multiple
hardware platforms, potentially at multiple geographical
locations.

The embodiments of the invention described herein
include techniques for authenticating a user for a transaction
initiated through a secure transaction device. By way of
example, the transaction may be a withdrawal, transfer, or
other user-initiated operation and the transaction device may
be an automatic teller machine (ATM), point-of-sale (PoS)
transaction device or other device capable of executing
transactions on behalf of the user. The transaction may
involve, for example, completing a payment to purchase
goods or services at a retail store or other retail location
equipped with the device, withdrawing funds via the device,
performing maintenance on the device, or any other trans-
action for which user authentication is required.

10

15

20

25

30

35

40

45

50

55

60

65

4

One embodiment of the invention provides techniques for
authenticating the user locally (i.e. verifying the user), even
in circumstances where the device is offline (i.e., not con-
nected to a back-end authentication server) or semi-offline
(i.e., only periodically connected to a back-end authentica-
tion server). In one embodiment, the user’s client device is
provided with the ability to cache authentication requests
generated by a back-end authentication server (e.g., operated
on behalf of the relying party) and the device is provided
with data needed to verify the authentication response
transmitted from the user’s client device to the device.

Prior to discussing the details of these embodiments of the
invention, an overview of remote user authentication tech-
niques will be provided. These and other remote user
authentication techniques are described in the co-pending
applications, which are assigned to the assignee of the
present application and incorporated herein by reference.

Remote User Authentication Techniques

FIGS. 2A-B illustrate two embodiments of a system
architecture comprising client-side and server-side compo-
nents for remotely authenticating a user. The embodiment
shown in FIG. 2A uses a browser plugin-based architecture
for communicating with a website while the embodiment
shown in FIG. 2B does not require a browser. The various
authentication techniques and associated applications
described herein may be implemented on either of these
system architectures. For example, the authentication
engines within client devices described herein may be
implemented as part of the secure transaction service 201
including interface 202. It should be noted, however, that the
embodiments described above may be implemented using
logical arrangements of hardware and software other than
those shown in FIGS. 2A-B.

Turning to FIG. 2A, the illustrated embodiment includes
a client 200 equipped with one or more authentication
devices 210-212 for enrolling and authenticating an end
user. As mentioned above, the authentication devices 210-
212 may include biometric devices such as fingerprint
sensors, voice recognition hardware/software (e.g., a micro-
phone and associated software for recognizing a user’s
voice), facial recognition hardware/software (e.g., a camera
and associated software for recognizing a user’s face), and
optical recognition capabilities (e.g., an optical scanner and
associated software for scanning the retina of a user) and
non-biometric devices such as a trusted platform modules
(TPMs) and smartcards. A user may enroll the biometric
devices by providing biometric data (e.g., swiping a finger
on the fingerprint device) which the secure transaction
service 201 may store as biometric template data in secure
storage 220 (via interface 202).

While the secure storage 220 is illustrated outside of the
secure perimeter of the authentication device(s) 210-212, in
one embodiment, each authentication device 210-212 may
have its own integrated secure storage. Additionally, each
authentication device 210-212 may cryptographically pro-
tect the biometric reference data records (e.g., wrapping
them using a symmetric key to make the storage 220 secure).

The authentication devices 210-212 are communicatively
coupled to the client through an interface 202 (e.g., an
application programming interface or API) exposed by a
secure transaction service 201. The secure transaction ser-
vice 201 is a secure application for communicating with one
or more secure transaction servers 232-233 over a network
and for interfacing with a secure transaction plugin 205
executed within the context of a web browser 204. As

US 9,450,760 B2

5

illustrated, the Interface 202 may also provide secure access
to a secure storage device 220 on the client 200 which stores
information related to each of the authentication devices
210-212 such as a device identification code (such as an
Authenticator Attestation ID (AAID)), user identification
code, user enrollment data (e.g., scanned fingerprint or other
biometric data), and keys used to perform the secure authen-
tication techniques described herein. For example, as dis-
cussed in detail below, a unique key may be stored into each
of the authentication devices and subsequently used when
communicating to servers 230 over a network such as the
Internet.

As discussed below, certain types of network transactions
are supported by the secure transaction plugin 205 such as
HTTP or HTTPS transactions with websites 231 or other
servers. In one embodiment, the secure transaction plugin is
initiated in response to specific HTML tags inserted into the
HTML code of a web page by the web server 231 within the
secure enterprise or Web destination 230 (sometimes simply
referred to below as “server 230”). In response to detecting
such a tag, the secure transaction plugin 205 may forward
transactions to the secure transaction service 201 for pro-
cessing. In addition, for certain types of transactions (e.g.,
such as secure key exchange) the secure transaction service
201 may open a direct communication channel with the
on-premises transaction server 232 (i.e., co-located with the
website) or with an off-premises transaction server 233.

The secure transaction servers 232-233 are coupled to a
secure transaction database 240 for storing user data, authen-
tication device data, keys and other secure information
needed to support the secure authentication transactions
described below. It should be noted, however, that the
underlying principles of the invention do not require the
separation of logical components within the secure enter-
prise or web destination 230 shown in FIG. 2A. For
example, the website 231 and the secure transaction servers
232-233 may be implemented within a single physical server
or separate physical servers. Moreover, the website 231 and
transaction servers 232-233 may be implemented within an
integrated software module executed on one or more servers
for performing the functions described below.

As mentioned above, the underlying principles of the
invention are not limited to a browser-based architecture
shown in FIG. 2A. FIG. 2B illustrates an alternate imple-
mentation in which a stand-alone application 254 utilizes the
functionality provided by the secure transaction service 201
to authenticate a user over a network. In one embodiment,
the application 254 is designed to establish communication
sessions with one or more network services 251 which rely
on the secure transaction servers 232-233 for performing the
user/client authentication techniques described in detail
below.

In either of the embodiments shown in FIGS. 2A-B, the
secure transaction servers 232-233 may generate the keys
which are then securely transmitted to the secure transaction
service 201 and stored into the authentication devices within
the secure storage 220. Additionally, the secure transaction
servers 232-233 manage the secure transaction database 240
on the server side.

FIG. 2C illustrates a series of transactions for registering
authentication devices. As mentioned above, during regis-
tration, a key is shared between the authentication device
and one of the secure transaction servers 232-233. The key
is stored within the secure storage 220 of the client 200 and
the secure transaction database 220 used by the secure
transaction servers 232-233. In one embodiment, the key is
a symmetric key generated by one of the secure transaction

10

15

20

25

30

35

40

45

50

55

60

65

6

servers 232-233. However, in another embodiment dis-
cussed below, asymmetric keys may be used. In this embodi-
ment, the public key may be stored by the secure transaction
servers 232-233 and a second, related private key may be
stored in the secure storage 220 on the client. Moreover, in
another embodiment, the key(s) may be generated on the
client 200 (e.g., by the authentication device or the authen-
tication device interface rather than the secure transaction
servers 232-233). The underlying principles of the invention
are not limited to any particular types of keys or manner of
generating the keys.

A secure key provisioning protocol such as the Dynamic
Symmetric Key Provisioning Protocol (DSKPP) may be
used to share the key with the client over a secure commu-
nication channel (see, e.g., Request for Comments (RFC)
6063). However, the underlying principles of the invention
are not limited to any particular key provisioning protocol.

Turning to the specific details shown in FIG. 2C, once the
user enrollment or user verification is complete, the server
230 generates a randomly generated challenge (e.g., a cryp-
tographic nonce) that must be presented by the client during
device registration. The random challenge may be valid for
a limited period of time. The secure transaction plugin
detects the random challenge and forwards it to the secure
transaction service 201. In response, the secure transaction
service initiates an out-of-band session with the server 230
(e.g., an out-of-band transaction) and communicates with
the server 230 using the key provisioning protocol. The
server 230 locates the user with the user name, validates the
random challenge, validates the device’s attestation code
(e.g., AAID) if one was sent, and creates a new entry in the
secure transaction database 220 for the user. It may also
generate the key or public/private key pair, write the key(s)
to the database 220 and send the key(s) back to the secure
transaction service 201 using the key provisioning protocol.
Once complete, the authentication device and the server 230
share the same key if a symmetric key was used or different
keys if asymmetric keys were used.

FIG. 3A illustrates a secure transaction confirmation for a
browser-based implementation. While a browser-based
implementation is illustrated, the same basic principles may
be implemented using a stand-alone application or mobile
device app.

The secure transaction confirmation is designed to pro-
vide stronger security for certain types of transactions (e.g.,
financial transactions). In the illustrated embodiment, the
user confirms each transaction prior to committing the
transaction. Using the illustrated techniques, the user con-
firms exactly what he/she wants to commit and commits
exactly what he/she sees displayed in a window 301 of the
graphical user interface (GUI). In other words, this embodi-
ment ensures that the transaction text cannot be modified by
a “man in the middle” (MITM) or “man in the browser”
(MITB) to commit a transaction which the user did not
confirm.

In one embodiment, the secure transaction plugin 205
displays a window 301 in the browser context to show the
transaction details. The secure transaction server 201 peri-
odically (e.g., with a random interval) verifies that the text
that is shown in the window is not being tampered by anyone
(e.g., by generating a hash/signature over the displayed text).
In a different embodiment, the authentication device has a
trusted user interface (e.g. providing an API compliant to
GlobalPlatform’s TrustedUI).

The following example will help to highlight the opera-
tion of this embodiment. A user chooses items for purchase
from a merchant site and selects “check out.” The merchant

US 9,450,760 B2

7

site sends the transaction to a service provide which has a
secure transaction server 232-233 implementing one or more
of the embodiments of the invention described herein (e.g.,
PayPal). The merchant site authenticates the user and com-
pletes the transaction.

The secure transaction server 232-233 receives the trans-
action details (TD) and puts a “Secure Transaction” request
in an HTML page and sends to client 200. The Secure
Transaction request includes the transaction details and a
random challenge. The secure transaction plugin 205 detects
the request for transaction confirmation message and for-
wards all data to the secure transaction service 201. In an
embodiment which does not use a browser or plugin, the
information may be sent directly from the secure transaction
servers to the secure transaction service on the client 200.

For a browser-based implementation, the secure transac-
tion plugin 205 displays a window 301 with transaction
details to the user (e.g. in a browser context) and asks the
user to provide authentication to confirm the transaction. In
an embodiment which does not use a browser or plugin, the
secure transaction service 201, the application 254 (FIG.
2B), or the authentication device 210 may display the
window 301. The secure transaction service 201 starts a
timer and verifies the content of the window 301 being
displayed to the user. The period of verification may be
randomly chosen. The secure transaction service 201
ensures that user sees the valid transaction details in the
window 301 (e.g., generating a hash on the details and
verifying that the contents are accurate by comparing against
a hash of the correct contents). If it detects that the content
has been tampered with it prevents the confirmation token/
signature from being generated.

After the user provides valid verification data (e.g. by,
swiping a finger on the fingerprint sensor), the authentica-
tion device verifies the user and generates a cryptographic
signature (sometimes referred to as a “token”) with the
transaction details and the random challenge (i.e., the sig-
nature is calculated over the transaction details and the
nonce). This allows the secure transaction server 232-233 to
ensure that the transaction details have not been modified
between the server and the client. The secure transaction
service 201 sends the generated signature and username to
the secure transaction plugin 205 which forwards the sig-
nature to the secure transaction server 232-233. The secure
transaction server 232-233 identifies the user with the user-
name and verifies the signature. If verification succeeds, a
confirmation message is sent to the client and the transaction
is processed.

One embodiment of the invention implements a query
policy in which a secure transaction server transmits a server
policy to the client indicating the authentication capabilities
accepted by the server. The client then analyzes the server
policy to identify a subset of authentication capabilities
which it supports and/or which the user has indicated a
desire to use. The client then registers and/or authenticates
the user using the subset of authentication tokens matching
the provided policy. Consequently, there is a lower impact to
the client’s privacy because the client is not required to
transmit exhaustive information about its authentication
capabilities (e.g., all of its authentication devices) or other
information which might be used to uniquely identify the
client.

By way of example, and not limitation, the client may
include numerous user verification capabilities such as a
fingerprint sensor, voice recognition capabilities, facial rec-
ognition capabilities, eye/optical recognition capabilities,
PIN verification, to name a few. However, for privacy

10

15

20

25

30

35

40

45

55

60

65

8

reasons, the user may not wish to divulge the details for all
of its capabilities to a requesting server. Thus, using the
techniques described herein, the secure transaction server
may transmit a server policy to the client indicating that it
supports, for example, fingerprint, optical, or smartcard
authentication. The client may then compare the server
policy against its own authentication capabilities and choose
one or more of the available authentication options.

One embodiment of the invention employs transaction
signing on the secure transaction server so that no transac-
tion state needs to be maintained on the server to maintain
sessions with clients. In particular, transaction details such
as transaction text displayed within the window 301 may be
sent to the client signed by the server. The server may then
verify that the signed transaction responses received by the
client are valid by veritying the signature. The server does
not need to persistently store the transaction content, which
would consume a significant amount of storage space for a
large number of clients and would open possibility for denial
of service type attacks on server.

One embodiment of the invention is illustrated in FIG. 3B
which shows a website or other network service 311 initi-
ating a transaction with a client 200. For example, the user
may have selected items for purchase on the website and
may be ready to check out and pay. In the illustrated
example, the website or service 311 hands off the transaction
to a secure transaction server 312 which includes signature
processing logic 313 for generating and verifying signatures
(as described herein) and authentication logic for performing
client authentication 314 (e.g., using the authentication
techniques previously described).

In one embodiment, the authentication request sent from
the secure transaction server 312 to the client 200 includes
the random challenge such as a cryptographic nonce (as
described above), the transaction details (e.g., the specific
text presented to complete the transaction), and a signature
generated by the signature processing logic 313 over the
random challenge and the transaction details using a private
key (known only by the secure transaction server).

Once the above information is received by the client, the
user may receive an indication that user verification is
required to complete the transaction. In response, the user
may, for example, swipe a finger across a fingerprint scan-
ner, snap a picture, speak into a microphone, or perform any
other type of authentication permitted for the given trans-
action. In one embodiment, once the user has been success-
fully verified by the authentication device 210, the client
transmits the following back to the server: (1) the random
challenge and transaction text (both previously provided to
the client by the server), (2) authentication data proving that
the user successfully completed authentication, and (3) the
signature.

The authentication module 314 on the secure transaction
server 312 may then confirm that the user has correctly
authenticated and the signature processing logic 313 re-
generates the signature over the random challenge and the
transaction text using the private key. If the signature
matches the one sent by the client, then the server can verify
that the transaction text is the same as it was when initially
received from the website or service 311. Storage and
processing resources are conserved because the secure trans-
action server 312 is not required to persistently store the
transaction text (or other transaction data) within the secure
transaction database 120.

US 9,450,760 B2

9

System and Method for Authenticating a Client to
an Offline Device or a Device Having Limited
Connectivity

As mentioned, one embodiment of the invention includes
techniques for authenticating the user locally (i.e. verifying
the user), even in circumstances where the user device and
device are offline (i.e., not connected to a back-end authen-
tication server of a relying party) or semi-offline (i.e., where
the user device is not connected to the relying party, but the
device is). FIG. 4 illustrates one such arrangement in which
a client 400 with authentication devices previously regis-
tered with a relying party 451 establishes a secure channel
with a transaction device 450 to complete a transaction. By
way of example, and not limitation, the transaction device
may be an ATM, point-of-sale (PoS) transaction device at a
retail location, Internet of Things (IoT) device, or any other
device capable of establishing a channel with the client 400
and allowing the user to perform a transaction. The channel
may be implemented using any wireless communication
protocol including, by way of example and not limitation,
near field communications (NFC) and Bluetooth (e.g., Blu-
etooth Low Energy (BTLE) as set forth in the Bluetooth
Core Specification Version 4.0). Of course, the underlying
principles of the invention are not limited to any particular
communication standard.

As indicated by the dotted arrows, the connection
between the client 400 and the relying party 451 and/or the
connection between the transaction device 450 and the
relying party 451 may be sporadic or non-existent. Real
world applications in the area of payments often rely on such
“off-line” use-cases. For example, a user with a client 400
(e.g., a Smartphone) may not have connectivity to the
relying party 451 at the time of the transaction but may want
to authorize a transaction (e.g. a payment) by authenticating
to the transaction device 450. However, in some embodi-
ments of the invention, the client 400 and/or transaction
device 450 do exchange some information with the relying
party 451 (although not necessarily during the authentication
or transaction confirmation process described herein).

Traditionally, user verification has been implemented
using a secret such as a personal identification number (PIN)
to be captured by the device (e.g. the PoS transaction device
or ATM). The device would then create an online connection
to the relying party in order to verify the secret or would ask
the user’s authenticator (e.g., EMV banking card) for veri-
fying the PIN. Such implementation has several disadvan-
tages. It might require an online connection—which might
be available sometimes, but not always. It also requires the
user to enter a long-term valid secret into potentially
untrusted devices, which are subject to shoulder-surfing and
other attacks. Additionally it is inherently tied to the specific
user verification method (e.g. PIN in this case). Finally, it
requires the user to remember a secret such as a PIN, which
may be inconvenient to the user.

The authentication techniques described herein provide
significantly more flexibility in terms of user verification
methods and security as they allow the user to rely on his/her
own client’s authentication capabilities. In particular, in one
embodiment, a mobile application on the user’s client
caches authentication requests provided by the relying party
during a time when the client is connected to the relying
party. The authentication requests may include the same (or
similar) information as the authentication requests described
above (e.g., a nonce and a public key associated with an
authenticator) as well as additional information including a
signature over (at least parts of) the authentication request

10

15

20

25

30

35

40

45

50

55

60

65

10

generated by a relying party, the verification key and poten-
tially timing data indicating the time period within which the
authentication request will remain valid (or conversely, the
time after which the authentication request will expire). In
one embodiment, the mobile application may cache multiple
such connection requests (e.g., one for each transaction
device or transaction device type).

In one embodiment, the cached authentication requests
may then be used for transactions with the transaction
device, in circumstances where the client/mobile app is
incapable of connecting with the relying party. In one
embodiment, the mobile app triggers the creation of the
authentication response based on the cached authentication
request containing the serverData and additional data
received from the transaction device. The authentication
response is then transmitted to the transaction device which
then verifies the authentication response using a verification
key provided from the relying party (e.g., during a time
when the transaction device is connected with the relying
party). In particular, the transaction device may use the key
provided by the relying party to verify the signature over the
serverData included in the authentication response. In one
embodiment, the signature is generated by the relying party
using a private relying party verification key and the trans-
action device verifies the signature using a corresponding
public relying party verification key (provided to the trans-
action device by the relying party).

Once the transaction device verifies the serverData
extracted from the authentication response, it may then use
the public key extracted from the authentication request
(e.g., Uauth.pub) to verify the authentication response gen-
erated by the client/mobile app (e.g., in the same or a similar
manner to the verifications by the relying party described
above, when the client is authenticating directly to the
relying party).

In an alternate embodiment described below, the relying
party provides the authentication request directly to the
transaction device (rather than through the mobile app on the
client device). In this embodiment, the transaction device
may ask for the authentication request from the relying party
upon receiving a request to complete a transaction from the
mobile app on the client. Once it has the authentication
request, it may validate the request and the authentication
response as described above (e.g., by generating a signature
and comparing it to the existing signature).

FIG. 5A is a transaction diagram showing interactions
between the client 400, transaction device 450 and relying
party in an embodiment in which the client 400 caches the
authentication request. This embodiment is sometimes
referred to as the “full-offline” embodiment because it does
not require the transaction device 450 to have an existing
connection with the relying party.

At 501, the client requests a cacheable authentication
request from the relying party. At 502, the relying party
generates the cacheable authentication request, at 503 the
authentication request is sent to the client, and at 504 the
client caches the authentication request. In one embodiment,
the authentication request includes the public key associated
with the authenticator to be used for authentication (Uauth-
.pub) and a signature generated using the relying party
verification key (RPVerifyKey) over the public key and a
random nonce. If asymmetric keys are used, then RPVeri-
fyKey used by the relying party to generate the signature is
a private key having a corresponding public RPVerifyKey
which the relying party has provided to the transaction
device (potentially far in advance of processing the user
authentication request).

US 9,450,760 B2

11

In one embodiment, the authentication request also
includes timing information indicating the length of time for
which the authentication request will be valid (e.g., Max-
CacheTime). In this embodiment, the signature for the
cacheable authentication request may be generated over the
combination of the public authentication key, the nonce, and
the MaxCacheTime (e.g., ServerData=Uauth.publMaxCa-
cheTimelserverNoncelSign (RPVerityKey, Uauth.pub/Max-
CacheTimelserverNonce)). In one embodiment, the authen-
tication response includes more than one authentication key
(e.g., one for each authenticator capable of authenticating
the user) and the signature may be generated over all of these
keys (e.g., along with the nonce and the MaxCacheTime).

As mentioned, the public RPVerifyKey needs to be
known the transaction device 450, or any device intended to
perform offline verification of the authentication requests/
responses. This extension is required because the transaction
device does not have any knowledge about the authentica-
tion keys registered at the relying party (i.e. no established
relation exists between user device and the transaction
device). Consequently, the relying party must communicate
to the transaction device (or other device), in a secure
manner, which key(s) are to be used for authentication
response verification. The transaction device will verify the
MaxCacheTime to determine whether the cached authenti-
cation request is still valid (to comply with the relying
party’s policy on how long the cached authentication request
may be used).

At 505, the client establishes a secure connection to the
transaction device and initiates a transaction. For example,
if the transaction device is a PoS transaction device, the
transaction may involve a debit or credit transaction. If the
transaction device is an ATM, the transaction may involve a
cash withdrawal or a maintenance task. The underlying
principles of the invention are not limited to any particular
type of transaction device or secure connection. In addition,
at 505, the client may transmit the cached authentication
request to the transaction device.

In response, at 506 the transaction device may transmit
device identity information (e.g., a transaction device iden-
tification code), a random challenge (nonce) and optionally
transaction text in a defined syntax to complete the trans-
action. The random challenge/nonce will then be crypto-
graphically bound to the authentication response. This
mechanism allows the device to verify that the user verifi-
cation is fresh and hasn’t been cached/reused.

In order to support transaction confirmations such as
described above (see, e.g., FIGS. 3A-B and associated text),
the transaction device may be required to create a standard-
ized, and human readable representation of the transaction.
“Standardized” as used herein means a format that can be
parsed by the relying party (e.g. for final verification as
indicated in operation 511 below) and/or the transaction
device. It needs to be human readable because transaction
confirmations require the authenticator to display it on the
secure display of the client 400. An example of such an
encoding could be XML where XSLT is used for visualiza-
tion.

At 507, to generate the authentication response, an
authentication user interface is displayed directing the user
to perform authentication on the client using a particular
authenticator (e.g., to swipe a finger on a fingerprint sensor,
enter a PIN code, speak into a microphone, etc). Once the
user provides authentication, the authentication engine on
the client verifies the identity of the user (e.g., comparing the
authentication data collected from the user with the user

10

15

20

25

30

35

40

45

50

55

60

65

12

verification reference data stored in the secure storage of the
authenticator) and uses the private key associated with the
authentication device to encrypt and/or generate a signature
over the random challenge (and also potentially the trans-
action device ID and/or the transaction text). The authenti-
cation response is then transmitted to the transaction device
at 508.

At 509, the transaction device uses the public RPVeri-
fyKey to verity the signature on the serverData (received at
505) if it has not done so already. Once the serverData is
verified, it knows the public key associated with the authen-
ticator used to perform the authentication (Uauth.pub). It
uses this key to verify the authentication response. For
example, it may use the public authentication key to decrypt
or verify the signature generated over the nonce and any
other related information (e.g., the transaction text, the
transaction device ID, etc). If transaction confirmation is
performed by the transaction device, then it may verify the
transaction text displayed on the client by validating the
signature generated over the transaction text and included in
the authentication response at 508. Instead of having a
cryptographically secured serverData structure, the transac-
tion device could also verify unsigned serverData using an
online connection to the relying party—if this is available
(semi-offline case).

At 510, a success or failure indication is sent to the client
depending on whether authentication was successful or
unsuccessful, respectively. If successful, the transaction
device will permit the transaction (e.g., debiting/crediting an
account to complete a purchase, dispensing cash, performing
administrative task, etc). If not, it will disallow the transac-
tion and/or request additional authentication.

If a connection to the relying party is present, then at 511
the transaction device may transmit the authentication
response to the relying party and/or the transaction text
(assuming that the relying party is the entity responsible for
verifying the transaction text). A record of the transaction
may be recorded at the relying party and/or the relying party
may verify the transaction text and confirm the transaction
(not shown).

FIG. 5B is a transaction diagram showing interactions
between the client 400, transaction device 450 and relying
party in an embodiment in which the transaction device has
a connection with and receives the authentication request
from the relying party. This embodiment is sometimes
referred to as the “semi-offline” embodiment because
although the client does not have a connection to the relying
party, the transaction device 450 does.

At 521, the client initiates a transaction, establishing a
secure connection with the transaction device (e.g., NFC,
Bluetooth, etc). At 522, the transaction device responsively
asks for an authentication request from the relying party. At
523, the relying party generates the authentication request
and at 524 the authentication request is sent to the transac-
tion device. As in the embodiment shown in FIG. 5A, the
authentication request may include the public key associated
with the authenticator on the client to be used for authenti-
cation (Uauth.pub) and a signature generated using the
relying party verification key (RPVerifyKey) over the public
key and a random nonce. If asymmetric keys are used, then
RPVerifyKey used by the relying party to generate the
signature is a private key having a corresponding public
RPVerifyKey which the relying party provides to the trans-
action device (potentially far in advance of processing the
user authentication request). Instead of having a crypto-
graphically secured serverData structure, the transaction

US 9,450,760 B2

13

device may also verify unsigned serverData using an online
connection to the relying party—if this is available (semi-
offline case).

In one embodiment, the serverData also includes timing
information indicating the length of time for which the
authentication request will be valid (e.g., MaxCacheTime).
In this embodiment, the signature for the serverData may be
generated over the combination of the public authentication
key, the nonce, and the MaxCacheTime (e.g.,
ServerData=Uauth.publMaxCacheTimelserverNoncelSign
(RPVerityKey, Uauth.pub/MaxCacheTimelserverNonce)).
In one embodiment, the authentication response includes
more than one authentication key (e.g., one for each authen-
ticator) and the signature may be generated over all of these
keys (e.g., along with the nonce and the MaxCacheTime).

In one embodiment, the remainder of the transaction
diagram in FIG. 5B operates substantially as shown in FIG.
5A. At 525 the transaction device may transmit identity
information (e.g., a transaction device identification code), a
random challenge (nonce) and optionally transaction text in
a defined syntax to complete the transaction. The random
challenge/nonce will then be cryptographically bound to the
authentication response. This mechanism allows the device
to verify that the user verification is fresh and hasn’t been
cached.

In order to support transaction confirmations such as
described above (see, e.g., FIGS. 3A-B and associated text),
the transaction device may be required to create a standard-
ized, and human readable representation of the transaction.
“Standardized” as used herein means a format that can be
parsed by the relying party (e.g. for final verification as
indicated in operation 511 below) and/or the transaction
device. It needs to be human readable because transaction
confirmations require the authenticator to display it on the
secure display of the client 400. An example of such an
encoding could be XML where XSLT is used for visualiza-
tion.

At 526, to generate the authentication response, an
authentication user interface is displayed directing the user
to perform authentication on the client using a particular
authenticator (e.g., to swipe a finger on a fingerprint sensor,
enter a PIN code, speak into a microphone, etc). Once the
user provides authentication, the authentication engine on
the client verifies the identity of the user (e.g., comparing the
authentication data collected from the user with the user
verification reference data stored in the secure storage of the
authenticator) and uses the private key associated with the
authentication device to encrypt and/or generate a signature
over the random challenge (and also potentially the trans-
action device 1D and/or the transaction text). The authenti-
cation response is then transmitted to the transaction device
at 527.

At 528, the transaction device uses the public RPVeri-
fyKey to verity the signature on the serverData (received at
524) if it has not done so already. Once the serverData is
verified, it knows the public key associated with the authen-
ticator used to perform the authentication (Uauth.pub). It
uses this key to verify the authentication response. For
example, it may use the public authentication key to decrypt
or verify the signature generated over the nonce and any
other related information (e.g., the transaction text, the
transaction device ID, etc). If transaction confirmation is
performed by the transaction device, then it may verify the
transaction text displayed on the client by validating the
signature generated over the transaction text and included in
the authentication response at 528. Instead of having a
cryptographically secured serverData structure, the transac-

10

15

20

25

30

40

45

50

55

60

14

tion device could also verify unsigned serverData using an
online connection to the relying party—if this is available
(semi-offline case).

At 529, a success or failure indication is sent to the client
depending on whether authentication was successful or
unsuccessful, respectively. If successful, the transaction
device will permit the transaction (e.g., debiting/crediting an
account to complete a purchase, dispensing cash, performing
administrative task, etc). If not, it will disallow the transac-
tion and/or request additional authentication.

At 530 the transaction device may transmit the authenti-
cation response to the relying party and/or the transaction
text (assuming that the relying party is the entity responsible
for verifying the transaction text). A record of the transaction
may be recorded at the relying party and/or the relying party
may verify the transaction text and confirm the transaction
(not shown).

As illustrated in FIG. 6, in one embodiment, a mobile app
601 is executed on the client to perform the operations
described herein in combination with an authentication
client 602 (which may be the secure transaction service 201
and interface 202 shown in FIG. 2B). In particular, the
mobile app 601 may open a secure channel to a web app 611
executed on the transaction device 450 using transport layer
security (TLS) or other secure communication protocol. A
web server 612 on the transaction device may also open a
secure channel to communicate with the relying party 451
(e.g., to retrieve authentication requests and/or to provide
updates to the relying party 451 as discussed above). The
authentication client 602 may communicate directly with the
relying party 451 to, for example, retrieve cacheable authen-
tication requests (as discussed in detail above).

In one embodiment, the authentication client 602 may
identify the relying party and any authorized Mobile Apps
601 with an “AppID” which is a unique code associated with
each application made available by a relying party. In some
embodiments, where a relying party offers multiple online
services, a user may have multiple AppIDs with a single
relying party (one for each service offered by the relying
party).

In one embodiment, any application identified by an
ApplID may have multiple “facets” which identify the allow-
able mechanisms and/or application types for connecting
with the relying party. For example, a particular relying
party may allow access via a Web service and via different
platform-specific mobile apps (e.g., an Android App, an i0S
App, etc). Each of these may be identified using a different
“FacetID” which may be provided by the relying party to the
authentication engine as illustrated.

In one embodiment, the calling mobile app 601 passes its
ApplD to the API exposed by the authentication client 602.
On each platform, the authentication client 602 identifies the
calling app 601, and determines its FacetID. It then resolves
the AppID and checks whether the FacetID is included in a
TrustedApps list provided by the relying party 451.

In one embodiment, the cacheable authentication requests
discussed above may be implemented using bearer tokens
such as illustrated in FIGS. 7 and 8. In the embodiments of
the invention described herein, the token recipient (the
transaction device 450), needs to be able to verify the token,
the authentication response and the binding of the token to
the authentication response without requiring another
“online” connection to the token issuer (the relying party).

Two classes of bearer tokens should be distinguished:

1. Tokens which can only be verified by the recipient (e.g.,
the transaction device 450) using a different channel to the
issuer (e.g., the relying party 451), that must exist between

US 9,450,760 B2

15

the token issuance and the token verification. This class of
tokens is referred to herein as “unsigned tokens.”

2. Tokens which can be verified by the recipient due to
their cryptographic structure, e.g., because they contain a
digital signature which can be verified using data received
from the token issuer, potentially way before the specific
token was issued. This class of tokens is referred to herein
as “signed tokens”.

The term “signed token structure” Is used herein to refer
to both the signed token including the Uauth.pub key and the
signed structure containing the token.

Binding Signed Tokens to Authentication Keys

As illustrated in FIG. 7, in one embodiment, in order to
bind signed tokens to the Authentication Key, the token
issuer (e.g., the relying party 451): (a) adds the Authentica-
tion public key (Uauth.pub) 702 to the to-be-signed portion
701 of the (to-be-) signed token; and (b) includes that signed
token in the to-be-signed portion of the authentication
response. By doing this, the token recipient (e.g., the trans-
action device 450) can verify the token by validating the
signature 703 (e.g., the public RPVerifyKey discussed
above). If the verification succeeds, it can extract the public
key (Uauth.pub) and use it to verify the authentication
response, as previously discussed.

Binding Unsigned Tokens to Authentication Keys

As illustrated in FIG. 8, in order to bind unsigned tokens
802 to the Authentication Key, in one embodiment, the token
issuer (e.g., the relying party 451) creates a signed structure
covering (at least) the original token 802 and to-be-signed
data 801 which includes the authentication public key (Uau-
th.pub). The signed structure can be verified by validating
the signature 803 using the public key related to the private
signing key (e.g., the RPVerifyKey pair discussed above).
This public signing key needs to be shared with the token
recipient (e.g., the transaction device 450). Sharing can be
done once after generation of the signing key pair, poten-
tially way before the first signed structure was generated.

The techniques described herein support both the “full-
offline” implementation (i.e., the transaction device 450 has
no connection to the relying party 451 at the time of the
transaction) as well as the “semi-offline” implementation
(i.e., the transaction device has a connection to the relying
party 451 at the time of the transaction, but the client does
not.

Even in the full-offline case, the transaction device 450 is
still expected to be connected via a host from time to time
to the relying party 451. For example, the host may collect
all responses stored in the transaction device 450 in order to
send them to the relying party and may also update (if
required) the list of revoked Uauth keys (e.g., the public
authentication keys which have been revoked since the last
connection).

Some embodiments also support pure (session) authenti-
cation as well as transaction confirmation. Even in the case
of transaction confirmation, the relying party 451 can verify
the transaction, if the transaction device 450 submits the
transaction text along with the authentication response to the
relying party 451.

There several different use cases/applications for the
techniques described herein. For example:

1. Payment.

A user has registered his authenticator (e.g. a smartphone)
with a payment service provider (PSP). The user wants to
authenticate a payment at some merchant using a Point-of-
Sale device (PoS) authorized by the PSP, but the PoS doesn’t
have a reliable and permanent online connection to the PSP
(e.g. located in a Bus). In this example, the PoS may be

25

30

35

40

45

50

60

16

implemented as the transaction device 450 and the PSP may
be implemented as the relying party 451 described above to
allow the transaction notwithstanding the lack of a reliable
and permanent connection.

2. Internet-of-Things.

A company has installed several embedded devices (e.g.
in a factory, building, etc.). Maintenance of such devices is
performed by a technicians employed by a contracted party.
For performing the maintenance the technician has to
authenticate to the device in order to prove his eligibility for
the task. The following assumptions are made (based on
realistic frame conditions):

a. The technician cannot perform registration with each of
such devices (as there are too many of them).

b. There are too many technicians and too much fluctua-
tion of such technicians in order to keep the list of eligible
technicians up-to-date on each of the devices.

c. Neither the device nor the technician’s computer has a
reliable network connection at the time of maintenance.

Using the techniques described above, the company can
inject a trust anchor (e.g., the public RPVerifyKey) into all
devices once (e.g., at installation time). Each technician then
registers with the contracted party (e.g., the relying party
451 which may be the technician’s employer). Using the
above techniques, the technician will be able to authenticate
to each device.

The embodiments of the invention described above may
be implemented in any system in which a client with
authentication capabilities is registered with a relying party
and the authentication operation is performed between this
client and a device (a) acting on behalf of the relying party
and (b) being offline (i.e. not having a reliable network
connection to the relying party’s original server the client
has been registered with) at the time of transaction. In such
a case, the client receives a cacheable authentication request
from the original server and caches it. Once it is required, the
client computes the authentication response and sends it to
the device.

In another embodiment, the client adds channel binding
data (received in the authentication request) to the response
in a cryptographically secure way. By doing this, the relying
party’s original server can verify that the request was
received by a legitimate client (and not some man-in-the-
middle).

In one embodiment, the relying party adds additional
authenticated data to the response such as the Uauth.pub key
which allows the device to verify the authentication or
transaction confirmation response, without having to contact
the relying party server for retrieving the approved Uauth-
.pub key. In another embodiment, the relying party requires
the user of the client to perform a successful authentication
before issuing the “cacheable” authentication requests (in
order to prevent denial of service attacks). In one embodi-
ment, the relying party requires the client to indicate whether
a request needs to be cacheable or not. If cacheable, the
relying party may require additional authentication data in
the response (e.g., the MaxCacheTime discussed above).

In one embodiment, a device such as the transaction
device 450 does not have a direct network connection to the
relying party and is “synchronized” to the relying party
using a separate computer (sometimes referred to herein as
the “host™). This host retrieves all collected authentication
responses from the device and transfers them to the relying
party. Additionally the host may also copy a list of revoked
Uauth keys to the device to ensure that one of the revoked
keys is not used in an authentication response.

US 9,450,760 B2

17

In one embodiment, a device such as the transaction
device 450 sends a random value (e.g., nonce) to the client
and the client cryptographically adds this random value as
an extension to the authentication response before signing it.
This signed random value serves as a freshness proof to the
device.

In one embodiment, the client’s authenticator adds the
current time Ta as an extension to the authentication
response before signing it. The device/transaction device
may compare that time to the current time Td and only
accept the response if the difference between Ta and Td is
acceptable (e.g., if the difference is less than two minutes
(abs(Td-Ta)<2 min)).

In one embodiment, the relying party adds an authenti-
cated (i.e., signed) expiration time to the cacheable request.
As discussed above, the device/transaction device will only
accept the response as valid if it is received before the
expiration time.

In one embodiment, the relying party adds an authenti-
cated (i.e., signed) data block (e.g., the “signed token
structure” mentioned above) including additional informa-
tion such as (but not limited to) public key, expiration time,
maximum transaction value (e.g., Security Assertion
Markup Language (SAML) assertions, OAuth tokens, JSON
Web Signature (JWS) objects, etc) to the cacheable request.
The device/transaction device may only accept the response
as valid if the signed data block can be positively verified
and the contents are acceptable.

In one embodiment, the relying party only adds the
unsigned token to the cacheable authentication request, but
the transaction device has an online connection to the
relying party at the time of transaction. The transaction
device verifies the authenticity of the unsigned token using
the online connection to the relying party at the time of
transaction.

FIG. 9 illustrates exemplary “offline” and “semi-offline”
authentication scenarios in accordance with one embodi-
ment of the invention. In this embodiment, the user with a
computing device 910 has an established relation to the
relying party 930 and could authenticate to the relying party.
However, in some circumstances, the user wants to perform
a transaction (e.g., an authentication of a transaction con-
firmation) with a device 970 which has an established
relation to the relying party 930 but not necessarily one to
the user’s computing device 910. With respect to this
embodiment, the transaction is referred to as “full offline” if
the connection 920 and connection 921 do not exist or are
not stable at the relevant time (e.g., the time of authentica-
tion of the user’s computing device 910 to the device 970 or
of the transaction between the user’s computing device 910
and the device 970). With respect to this embodiment, the
transaction is “semi-offline” if the connection 920 between
the user’s computing device 910 and the relying party 930
is not stable, but the connection 921 between the device 970
and the relying party 930 is stable. Note that in this embodi-
ment, connection 922 between the user’s computing device
910 and device 970 is required to be stable at the relevant
time. It is also expected that the Authenticator to be con-
nected to the user’s computing device 910. The connection
922 could be implemented using any type of communication
channels/protocols including, but not limited to, Bluetooth,
Bluetooth low energy (BTLE), near field communication
(NFC), Wifi, Global System for Mobile Communications
(GSM), Universal Mobile Telecommunications System
(UTMS), Long-Term Evolution (LTE) (e.g., 4G LTE), and
TCP/IP.

10

15

20

25

30

35

40

45

50

55

60

65

18

Exemplary Data Processing Devices

FIG. 10 is a block diagram illustrating an exemplary
clients and servers which may be used in some embodiments
of the invention. It should be understood that while FIG. 10
illustrates various components of a computer system, it is
not intended to represent any particular architecture or
manner of interconnecting the components as such details
are not germane to the present invention. It will be appre-
ciated that other computer systems that have fewer compo-
nents or more components may also be used with the present
invention.

As illustrated in FIG. 10, the computer system 1000,
which is a form of a data processing system, includes the
bus(es) 1050 which is coupled with the processing system
1020, power supply 1025, memory 1030, and the nonvola-
tile memory 1040 (e.g., a hard drive, flash memory, Phase-
Change Memory (PCM), etc.). The bus(es) 1050 may be
connected to each other through various bridges, controllers,
and/or adapters as is well known in the art. The processing
system 1020 may retrieve instruction(s) from the memory
1030 and/or the nonvolatile memory 1040, and execute the
instructions to perform operations as described above. The
bus 1050 interconnects the above components together and
also interconnects those components to the optional dock
1060, the display controller & display device 1070, Input/
Output devices 1080 (e.g., NIC (Network Interface Card), a
cursor control (e.g., mouse, touchscreen, touchpad, etc.), a
keyboard, etc.), and the optional wireless transceiver(s)
1090 (e.g., Bluetooth, WiFi, Infrared, etc.).

FIG. 11 is a block diagram illustrating an exemplary data
processing system which may be used in some embodiments
of the invention. For example, the data processing system
190 may be a handheld computer, a personal digital assistant
(PDA), a mobile telephone, a portable gaming system, a
portable media player, a tablet or a handheld computing
device which may include a mobile telephone, a media
player, and/or a gaming system. As another example, the
data processing system 1100 may be a network computer or
an embedded processing device within another device.

According to one embodiment of the invention, the exem-
plary architecture of the data processing system 1100 may be
used for the mobile devices described above. The data
processing system 1100 includes the processing system
1120, which may include one or more microprocessors
and/or a system on an integrated circuit. The processing
system 1120 is coupled with a memory 1110, a power supply
1125 (which includes one or more batteries) an audio
input/output 1140, a display controller and display device
1160, optional input/output 1150, input device(s) 1170, and
wireless transceiver(s) 1130. It will be appreciated that
additional components, not shown in FIG. 11, may also be
a part of the data processing system 1100 in certain embodi-
ments of the invention, and in certain embodiments of the
invention fewer components than shown in FIG. 11 may be
used. In addition, it will be appreciated that one or more
buses, not shown in FIG. 11, may be used to interconnect the
various components as is well known in the art.

The memory 1110 may store data and/or programs for
execution by the data processing system 1100. The audio
input/output 1140 may include a microphone and/or a
speaker to, for example, play music and/or provide tele-
phony functionality through the speaker and microphone.
The display controller and display device 1160 may include
a graphical user interface (GUI). The wireless (e.g., RF)
transceivers 1130 (e.g., a WiFi transceiver, an infrared
transceiver, a Bluetooth transceiver, a wireless cellular tele-
phony transceiver, etc.) may be used to communicate with

US 9,450,760 B2

19

other data processing systems. The one or more input
devices 1170 allow a user to provide input to the system.
These input devices may be a keypad, keyboard, touch
panel, multi touch panel, etc. The optional other input/output
1150 may be a connector for a dock.
Embodiments of the invention may include various steps
as set forth above. The steps may be embodied in machine-
executable instructions which cause a general-purpose or
special-purpose processor to perform certain steps. Alterna-
tively, these steps may be performed by specific hardware
components that contain hardwired logic for performing the
steps, or by any combination of programmed computer
components and custom hardware components.
Elements of the present invention may also be provided as
a machine-readable medium for storing the machine-execut-
able program code. The machine-readable medium may
include, but is not limited to, floppy diskettes, optical disks,
CD-ROMs, and magneto-optical disks, ROMs, RAMs,
EPROMs, EEPROMs, magnetic or optical cards, or other
type of media/machine-readable medium suitable for storing
electronic program code.
Throughout the foregoing description, for the purposes of
explanation, numerous specific details were set forth in
order to provide a thorough understanding of the invention.
It will be apparent, however, to one skilled in the art that the
invention may be practiced without some of these specific
details. For example, it will be readily apparent to those of
skill in the art that the functional modules and methods
described herein may be implemented as software, hardware
or any combination thereof. Moreover, although some
embodiments of the invention are described herein within
the context of a mobile computing environment, the under-
lying principles of the invention are not limited to a mobile
computing implementation. Virtually any type of client or
peer data processing devices may be used in some embodi-
ments including, for example, desktop or workstation com-
puters. Accordingly, the scope and spirit of the invention
should be judged in terms of the claims which follow.
Embodiments of the invention may include various steps
as set forth above. The steps may be embodied in machine-
executable instructions which cause a general-purpose or
special-purpose processor to perform certain steps. Alterna-
tively, these steps may be performed by specific hardware
components that contain hardwired logic for performing the
steps, or by any combination of programmed computer
components and custom hardware components.
I claim:
1. A method comprising:
registering an authenticator of a client with a relying
party, the registration allowing a user of the client to
remotely authenticate the user to the relying party over
a network;

generating, at the relying party, a first authentication
structure using at least a first authentication key asso-
ciated with the authenticator and a signature generated
with a first verification key;

caching the first authentication structure on the client;

providing a second verification key corresponding to the

first verification key to a transaction device; and
performing an authentication transaction between the
client and the transaction device in which the client
generates a second authentication structure using a
second authentication key associated with the first
authentication key, the transaction device uses the
second verification key to validate the signature on the
first authentication structure and uses the first authen-
tication key to validate the second authentication struc-

10

15

20

25

30

35

40

45

50

55

60

65

20

ture, wherein the first and second verification keys are
the same keys and/or wherein the first and second
authentication keys are the same keys.
2. The method as in claim 1 wherein the first verification
key is a private key used to generate the signature and the
second verification key provided to the transaction device is
a corresponding public verification key configured to vali-
date the signature.
3. The method as in claim 1 wherein the second authen-
tication key comprises a private authentication key associ-
ated with the authenticator and the first authentication key is
a corresponding public authentication key.
4. The method as in claim 1, wherein the first authenti-
cation key comprises a public key associated with the
authenticator (Uauth.pub) and the signature is generated
over at least the public key using the first verification key.
5. The method as in claim 4 wherein the first authentica-
tion structure comprises a combination of a nonce generated
by the relying party, the public key and the signature
generated over the combination of the nonce and the public
key.
6. The method as in claim 4 wherein the first authentica-
tion structure comprises a combination of a nonce generated
by the relying party, cache timing data indicating an amount
of time the first authentication structure can be cached on the
client, the public key and the signature generated over the
combination of the nonce, the cache timing data, and the
public key.
7. The method as in claim 4 wherein the second authen-
tication structure comprises a nonce or a value provided by
the transaction device and a signature generated by applying
the second authentication key over at least the nonce and/or
the value provided by the transaction device.
8. The method as in claim 4 wherein the second authen-
tication structure comprises a signature generated by apply-
ing the second authentication key over transaction text
securely displayed on the client during a transaction with the
transaction device.
9. The method as in claim 8 wherein the signature is
verified by the transaction device and/or the relying party
using the first authentication key.
10. A method comprising:
registering an authenticator of a client with a relying
party, the registration allowing a user of the client to
remotely authenticate the user to the relying party over
a network;

generating, at the relying party, a first authentication
structure using at least a first authentication key asso-
ciated with the authenticator and a signature generated
with a first verification key;

storing the first authentication structure on a transaction

device responsive to a user request to initiate a trans-
action through the transaction device;
providing a second verification key corresponding to the
first verification key to the transaction device; and

performing an authentication transaction between the
client and the transaction device in which the client
generates a second authentication structure using a
second authentication key associated with the first
authentication key, the transaction device uses the
second verification key to validate the signature on the
first authentication structure and uses the first authen-
tication key to validate the second authentication struc-
ture, wherein the first and second verification keys are
the same keys and/or wherein the first and second
authentication keys are the same keys.

US 9,450,760 B2

21

11. The method as in claim 10 wherein the first verifica-
tion key is a private key used to generate the signature and
the second verification key provided to the transaction
device is a corresponding public verification key configured
to validate the signature.
12. The method as in claim 10 wherein the second
authentication key comprises a private authentication key
associated with the authenticator and the first authentication
key is a corresponding public authentication key.
13. The method as in claim 10, wherein the first authen-
tication key comprises a public key associated with the
authenticator (Uauth.pub) and the signature is generated
over at least the public key using the first verification key.
14. The method as in claim 13 wherein the first authen-
tication structure comprises a combination of a nonce gen-
erated by the relying party, the public key and the signature
generated over the combination of the nonce and the public
key.
15. The method as in claim 13 wherein the first authen-
tication structure comprises a combination of a nonce gen-
erated by the relying party, cache timing data indicating an
amount of time the first authentication structure can be
cached on the client, the public key and the signature
generated over the combination of the nonce, the cache
timing data, and the public key.
16. The method as in claim 13 wherein the second
authentication structure comprises a nonce or a value pro-
vided by the transaction device and a signature generated by
applying the second authentication key over at least the
nonce and/or the value provided by the transaction device.
17. The method as in claim 13 wherein the second
authentication structure comprises a signature generated by
applying the second authentication key over transaction text
securely displayed on the client during a transaction with the
transaction device.
18. The method as in claim 17 wherein the signature is
verified by the transaction device and/or the relying party
using the first authentication key.
19. A method comprising:
registering an authenticator of a client with a relying
party, the registration allowing a user of the client to
remotely authenticate the user to the relying party over
a network;

generating, at the relying party, a first authentication
structure using at least a first authentication key asso-
ciated with the authenticator;

10

15

20

25

30

35

40

22

caching the first authentication structure on the client; and

performing an authentication transaction between the

client and a transaction device in which the client
generates a second authentication structure using a
second authentication key associated with the first
authentication key, the transaction device uses an
online or out-of-band connection to the relying party to
validate the first authentication structure and uses the
first authentication key to validate the second authen-
tication structure, wherein the first and second authen-
tication keys are the same keys.

20. The method as in claim 19 wherein the second
authentication key comprises a private authentication key
associated with the authenticator and the first authentication
key is a corresponding public authentication key.

21. The method as in claim 19 wherein the first authen-
tication key comprises a public key associated with the
authenticator (Uauth.pub).

22. The method as in claim 21 wherein the first authen-
tication structure comprises a combination of a nonce gen-
erated by the relying party, the public key and a signature
generated over the combination of the nonce and the public
key.

23. The method as in claim 21 wherein the first authen-
tication structure comprises a combination of a nonce gen-
erated by the relying party, cache timing data indicating an
amount of time the first authentication structure can be
cached on the client, the public key and a signature gener-
ated over the combination of the nonce, the cache timing
data, and the public key.

24. The method as in claim 21 wherein the second
authentication structure comprises a nonce or a value pro-
vided by the transaction device and a signature generated by
applying the second authentication key over at least the
nonce and/or the value provided by the transaction device.

25. The method as in claim 21 wherein the second
authentication structure comprises a signature generated by
applying the second authentication key over transaction text
securely displayed on the client during a transaction with the
transaction device.

26. The method as in claim 25 wherein the signature is
verified by the transaction device and/or the relying party
using the first authentication key.

#* #* #* #* #*

